Oral Sphere

Journal of Dental and Health Sciences

Pharmacogenomics in Pediatric Cancer Patients Treated with Irinotecan: A Systematic Review

Review Article

Abstract

Background: Irinotecan, a vital chemotherapeutic in pediatric oncology, often causes severe toxicities, including grade 3-4 neutropenia and diarrhoea. These adverse events are strongly linked to interpatient variability in the metabolism of its active metabolite, SN-38, primarily by the UDP-glucuronosyltransferase 1A1 (UGT1A1) enzyme. Polymorphisms like UGT1A1*28 and *6 impair this detoxification, increasing toxicity risk. While UGT1A1 genotyping is standard for adults, pediatric-specific guidelines are lacking due to developmental differences in enzyme expression and pharmacokinetics.

Objective: This systematic review aims to synthesize evidence on UGT1A1 pharmacogenomics in pediatric cancer patients receiving irinotecan, focusing on genotype-toxicity associations, implementation challenges, and research gaps.

Methods: Following PRISMA guidelines, we searched PubMed, Scopus, and EMBASE (January 2000 – August 2025). Included studies involved pediatric patients (<18 years) with irinotecan treatment, reporting UGT1A1 genotypes and their association with grade 3-4 neutropenia or diarrhoea. Data were narratively synthesized, and study quality assessed.

Results: Twenty-six studies (n=2,158 pediatric patients) consistently confirmed that UGT1A1*28 and *6 polymorphisms significantly increase the risk of severe neutropenia and diarrhoea (ORs typically 2.5-4.5). Genotype effects were attenuated in younger children (<5 years) due to developmental variations in UGT1A1 expression. Implementation barriers included testing cost, limited pediatric guidelines, and clinician unfamiliarity.

Conclusion: UGT1A1 polymorphisms are strong predictors of severe irinotecan toxicity in pediatric cancer patients. Pretherapeutic genotyping offers significant potential for personalized dosing and toxicity reduction. Urgent development of age-stratified guidelines and addressing implementation challenges are crucial for advancing precision medicine in pediatric oncology.

Keywords: UGT1A1, pharmacogenomics, irinotecan, pediatric oncology, personalized medicine, genotype-guided dosing, systematic review

References
  1. Furman WL et al.  J Clin Oncol. 2009;27(27):4599-604. [DOI: 10.1200/JCO.2009.21.9961]
  2. Mathijssen RH et al. Clin Cancer Res. 2001;7(8):2182-94. [DOI: 10.1158/1078-0432.CCR-0196-00]
  3. Rothenberg ML et al. Oncologist. 2001;6(1):66-80. [DOI: 10.1634/theoncologist.6-1-66]
  4. Veal GJ et al. Semin Fetal Neonatal Med. 2012;17(4):243-8. [DOI: 10.1016/j.siny.2012.04.008]
  5. Ghosal A et al. Curr Drug Metab. 2019;20(6):462-75. [DOI: 10.2174/1389200220666190520102636]
  6. Iyer L et al.  Pharmacogenomics J. 2002;2(1):43-7. [DOI: 10.1038/sj.tpj.6500078]
  7. Cheng L et al. Cancer Chemother Pharmacol. 2014;73(3):551-60. [DOI: 10.1007/s00280-014-2394-0]
  8. Etienne-Grimaldi MC et al. Fundam Clin Pharmacol. 2015;29(3):219-37. [DOI: 10.1111/fcp.12111]
  9. Hines RN et al.  Pharmacol Ther. 2008;118(2):250-67. [DOI: 10.1016/j.pharmthera.2008.01.005]
  10. Blake MJ et al. Pharmacogenomics. 2021;22(12):755-70. [DOI: 10.2217/pgs-2021-0038]
  11. Roncato R et al.  JAMA Netw Open. 2024;7(12):e2449441. [DOI: 10.1001/jamanetworkopen.2024.49441]
  12. Faisal MS et al.  J Chemother. 2025;37(3):199-212. [DOI: 10.1080/1120009X.2024.2349444]
  13. Innocenti F et al.  J Clin Oncol. 2004;22(8):1382-8. [DOI: 10.1200/JCO.2004.07.135]
  14. Cecchin E et al.  J Clin Oncol. 2009;27(15):2457-65. [DOI: 10.1200/JCO.2008.19.4674]
  15. NCCN. NCCN Clinical Practice Guidelines in Oncology: Colon Cancer. Version 2.2025 Natl Compr Cancer Netw. 2025. [Available from: https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1425].  
  16. Ando Y et al. Cancer Res. 2000 Dec 15;60(24):6921-6. [PMID: 11156391].
  17. Su YY et al. ESMO Open. 2023;8(1):100746. [DOI: 10.1016/j.esmoop.2022.100746]
  18. Ginzac A et al. Cancer Chemother Pharmacol. 2024;93(3):225-36. [DOI: 10.1007/s00280-023-04603-x]
  19. Liu X et al. PLoS One. 2017;12(3):e0173762. [DOI: 10.1371/journal.pone.0173762]
  20. Gagné JF et al. Mol Pharmacol. 2002;62(3):608-17. [DOI: 10.1124/mol.62.3.608]
  21. Page MJ et al.  BMJ. 2021;372:n71. [DOI: 10.1136/bmj.n71]
  22. Wells GA et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. [Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp]
  23. Sterne JAC et al. BMJ. 2019;366:l4898. [DOI: 10.1136/bmj.l4898]
  24. Guyatt GH et al. J Clin Epidemiol. 2011;64(4):407-15. [DOI: 10.1016/j.jclinepi.2010.07.017]
  25. Gong QH et al. Pharmacogenet Genomics. 2001;11(4):357-68. [DOI: 10.1097/00008571-200106000-00009]
  26. Strassburg CP et al.  Gut. 2002;50(2):259-65. [DOI: 10.1136/gut.50.2.259]
  27. Sugatani J et al. Drug Metab Pharmacokinet. 2010;25(3):205-14. [DOI: 10.2133/dmpk.25.205]
  28. Babadi E et al. Oncol Rev. 2025;19:1547904. [DOI: 10.3389/or.2025.1547904]
  29. Zhu X et al.  Pharmacogenomics Pers Med. 2021;14:369-77. [DOI: 10.2147/PGPM.S292556]
  30. Huang MJ et al.  Kaohsiung J Med Sci. 2000;16(1):1-7. [DOI: 10.1016/S1607-551X (09)70014-9]
  31. Geng S et al. Front Pharmacol. 2025;16:1563566. [DOI: 10.3389/fphar.2025.1563566]
  32. Smits A et al. Br J Clin Pharmacol. 2021;88(12):4965-84. [DOI: 10.1111/bcp.14958]
  33. Neyro V et al. Therapies. 2018;73(2):157-63. [DOI: 10.1016/j.therap.2017.11.010]
  34. Crona DJ et al. Pharmacogenomics J. 2016;16(1):54-62. [DOI: 10.1038/tpj.2015.34]
  35. Relling MV et al. Clin Pharmacol Ther. 2011;89(3):464-7. [DOI: 10.1038/clpt.2010.279]
  36. Peeters SLJ et al.  Eur J Cancer. 2023;162:148-57. [DOI: 10.1016/j.ejca.2021.12.009]
  37. van der Bol JM et al. Ther Drug Monit. 2010;32(2):123-9. [DOI: 10.1097/FTD.0b013e3181ce8f2a]